

Semester: 9

Integrated M.Sc. Mathematics Subject: 060090303 Advanced Mathematical Modeling Academic Year: 2019-20

Teaching Schedule

Course Objectives: To provide a tool to actively explore new ideas and improve the learning process as well as allowing plant operators training facilities and there by increasing their ability to handle unforeseen situations.

Course outcomes: Upon completion of the course, students shall be able to

CO1: be familiar with terms of the basic of mathematical modelling.

CO2: understand the latest development, merits and demerits of mathematical modelling.

- **CO3:** design difference equation based mathematical model and resolve the problem of field population, pollution, ecometrics, and cooling system etc.
- **CO4:** apply the difference equation based mathematical model to resolve the problems related to Epidemic model, compartment model, inflection model etc.
- **CO5:** make the mathematical model of partial differential equation to resolve various problems.

CO6: establish the connection of applicability of mathematical models to resolve the real problems arise in the fields of science and engineering.

Unit Sub Unit		No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodolog y to be used	Active Learning Activities	Evaluation Parameter	
Basics of Mathematical Modelling [10 hours]								
1	1.1	1	What is Mathematical ?	Ch#1	PPT, Chalk &	For Slow Learner:		
	1.2 2		History of Mathematica	l Mathematical	Talk	Students must write some theory	Assignment-	
	1.2	3	Modelling	Modeling		given by teacher after completion	1	

Semester: 9			Integrated M.Sc. Mathematics				Year: 2019-20	
				Subject: 0600	90303 Advanced Ma	athematical M	Iodeling	
		1.3	3	latest development in Mathematical Modelling	J N Kapur Ch#1		of unit.	Unit Test -1
		1.4	3	Merits and Demerits of Mathematical Modelling	Mathematical Modeling S.Banerjee		For Advanced Learner: Student will give PPT presentation of theory given by teacher after completion of unit.	Internal examination
	Math	ematic	al Mode	lling Through Difference Equat	tions –I [20 hours]	P		
2	2.1	2	Introduction to difference equations, Non-linear Difference equations					
		2.2	3	Steady state solution and linear stability analysis, Introduction to Discrete Models	Ch#5		For Slow Learner:	Assignment-
	2.3	10	Linear Model : Growth models, Decay models, Newton's Law of Cooling, Bank Account Problem and mortgage problem, Drug Delivery Problem, Harrod Model of Economic growth, War Model, Lake pollution model, Alcohol in the bloodstream model, Arm Race models, Linear Prey-Predator models,	Mathematical Modeling J N Kapur Ch#2 Mathematical Modeling S.Banerjee	PPT, Chalk & Talk	Students must solve some examples of Modeling given by teacher after completion of unit. For Advanced Learner: Student will give PPT presentation of some examples of Modeling given by teacher after completion of unit.	2 Unit Test -1 Unit Test -2 Internal examination	

Integrated M.Sc. Mathematics Academic Year: 2019-20 Semester: 9 Subject: 060090303 Advanced Mathematical Modeling Non Linear Models: Density dependent growth models 2.4 with harvesting. 5 Mathematical Modelling Through Difference Equations -I [15 hours] Introduction to Continuous 3.1 1 Models Carbon Dating, Drug Distribution in the Body, 3.2 4 Growth and decay of current in a L-R Circuit Oscillations. Horizontal For Slow Learner: 3.3 3 Vertical Oscillations, Damped Unit Test -2 Students must solve some Force Oscillation Ch#5 Assignmentexamples of Modeling given by Dynamics of Rowing, Combat Mathematical 3 teacher after completion of unit. Models, Mathematical Model Modeling For Advanced Learner: 3 of Influenza Infection (within I N Kapur Chalk & Talk Student will give PPT presentation 3.4 4 Ch#3 host), Epidemic Models (SI, of some examples of Modeling SIR, SIRS, SIC), Spreading of Mathematical Internal given by teacher after completion rumour model. Modeling examination of unit. S.Banerjee Steady State solutions. Linearization and Local Stability Analysis, logistic and gomperzian growth, prev-3.5 3 predator model, Competition models.

Semester: 9				Integrated M.Sc. Mathematics Subject: 060090303 Advanced Mathematical Modeling				Year: 2019-20
	Math	ematic	al Mode	lling Through Partial Different	ial Equations [15 hou	ırs]		
4		4.1	4	Fluid flow through a porous medium, heat flow through a small thin rod (one dimensional),	Ch#6 Mathematical Modeling		For Slow Learner: Students must solve some	
		4.2	4	Wave equation, Vibrating string, Traffic flow			teacher after completion of unit.	Internal examination
	4	4.3	3	Theory of Car-following, Crime Model	Ch#4	Chalk & Talk	Student will give PPT presentation	Assignment-
		4.4	4	Linear stability Analysis: one and two species models with diffusion, Conditions for diffusive instability with examples.	Modeling S. Banerjee		some examples of Modeling given by teacher after completion of unit.	4

Text book:

1. Kapur J. N., "Mathematical Modelling", New Age International Publishers, 2007.

Reference book:

1. Banerjee Sandip, "Mathematical Modelling Models, Analysis and Applications", CRC Press, Taylor & Francis Group, 2014.

Course Objectives and Course Outcomes Mapping:

- To provide a tool to actively explore new ideas: CO1, CO3, CO6
- To improve the learning process as well as allowing plant operators training facilities: CO2, CO4
- To increase students' ability to handle unforeseen situations: CO4, CO5, CO6

Semester: 9

Integrated M.Sc. Mathematics Subject: 060090303 Advanced Mathematical Modeling Academic Year: 2019-20

Course Units and Course Outcomes Map ping:

Unit	Unit	Course Outcomes					
No.							
		CO1	CO2	CO3	CO4	CO5	CO6
1	Basics of Mathematical Modelling	\checkmark	\checkmark				\checkmark
2	Mathematical Modelling Through			1			1
	Difference Equations –I			•			•
3	Mathematical Modelling Through				1		1
	Difference Equations –II				•		•
4	Mathematical Modelling Through Partial						
	Differential Equations					•	•

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Semester: 9

Integrated M.Sc. Mathematics Subject: 060090303 Advanced Mathematical Modeling Academic Year: 2019-20

Programme Outcomes and Course Outcomes mapping:

Programme Outcome	Course Outcomes							
	CO1	CO2	CO3	CO4	CO5	CO6		
P01	\checkmark	\checkmark			\checkmark			
P02		\checkmark	\checkmark	\checkmark				
P03				\checkmark	\checkmark	\checkmark		
P04		\checkmark	\checkmark			\checkmark		

